THE DIMESITYLBORON GROUP IN ORGANIC SYNTHESIS 7. A UNIQUE VARIANT OF THE BORON-WITTIG REACTION¹ WHICH STEREOSELECTIVELY YIELDS 1.2-DIOLS

Andrew Pelter*, Dieter Buss and Andrew Pitchford

Department of Chemistry, University College of Swansea, Singleton Park, Swansea SA2 BPP

Low temperature oxidation of the intermediates in the Wittig reactions of aryl aldehydes with carbanions stabilised with an adjacent dimesitylboron group leads stereoselectively to erythro-1,2-diols. The mechanistic implications for the boron-Wittig reactions are discussed.

It **has been recently pointed out' that "though the Wittig reaction has played a prominent role in synthetic chemistry for several decades, yet a clear mechanistic under**standing of its stereochemistry has failed to emerge". "Stereochemical drift"³ has been **invoked to explain product ratios which are affected by solvent, cation, temperature and the presence or absence of salts4. In the case of the silicon-Wittig reaction (Peterson reaction) some understanding and useful chemical reactions have resulted from detailed examination of the reactions of the intermediate 6-hydroxysilanes and their salts5.**

We recently introduced' the condensations of aldehydes and ketones with anions stabilised by an adjacent dimesitylboron group as a useful boron analogue of the Wittig reaction. We envisaged (Scheme) the reactions as proceeding via intermediate cyclic anionic oxaboratanes, 3a and 4a which undergo <u>syn</u>-elimination to yield alkenes 5 and 6 $^{\circ}$ **respectively, such proposals being paralleled by those put forward for the Wittig' and Peterson reactions6. We pointed out that the intermediates in the boron-Wittig reactions would be sterically more compressed than those of the phosphorus and silicon analogues and** that the boron reaction might therefore be more stereoselective. In particular the threo**oxaboratanes, 4a should be thermodynamically more stable than the erythro-compounds, 3a. Qn** In apparent confirmation, the condensation of benzaldehyde $(2, Ar = Ph)$ with $1 (R = Heptⁿ)$ gave only the E-alkene, 6 (Ar = Ph, R = Heptⁿ)¹. The yield however was not good (ca. 40% **isolated) and the alkene was accompanied by products arising from protiodeboronation 5a and** Canizzaro reactions involving benzaldehyde plus 3a and 4a acting as base.

In order to understand the course of the boron-Wittig reaction and to control the various processes we decided to examine the oxaboratanes $\frac{3}{\sqrt{2}}$ and $\frac{4}{\sqrt{2}}$ in more detail. Somewhat **to our surprise carrying out the reaction (Ar = Ph, R = Me) at -78°C followed by trapping by**

5093

silylation (Me3SiCl) gave erythro-l-phenyl-l-trimethylsilyloxy-Z-dimesitylborylpropane (50% isolated). This corresponds to β_{α} rather than β_{α} , our expected product.

Another way of obtaining insight into the reaction would be to utilise the facile oxidative cleavage of the C-B bond to produce $1,2$ -diols / and 8 which could then be examined \sim **by standard methods. The oxidation of organoboranes proceeds with retention of configuration7 and so the configurations of the** 1,2-dials **should give information about the** precursors, 3 and 4. Moreover, this reaction, if successful, would be a variant of the \sim **Wittig type process that would be unique to the boron-Wittig reaction and might represent a useful 1,2-diol synthesis.**

We therefore condensed benzaldehyde with 1 (R = Me) at -120°C and directly oxidised the ?, reaction mixture by slow addition of cold, alkaline hydrogen peroxide. Work-up gave no $\frac{\text{a}! \text{kene}}{\text{b}! \text{th}}$ but instead 84% isolated yield of 7 and 8 (Ar = Ph, R = Me) in a ratio of 92:8 (Table, entry 1). The predominance of the erythro-isomer corresponds well with the silylation **result (incfdentally proving that the oxidation has gone with retention of configuration) and shows that 1,2-diol formation is not only feasible, but an efficient new reaction. The** products of this reaction (entry 1) are known and well characterised⁸ and so serve as a

standard for determination of erythro, threo ratios (Table). At temperatures between -120°C to -45°C the erythro:threo ratio varied from IO:1 to 4:l. probably indicating a degree of reversibility in the formation of the oxaboratanes leading to stereochemical drift. At room temperature only Canizzaro products result in this case.

Entries 2 and 3 show that satisfactory results are obtained with substrates that might undergo anion exchange, while entries 4 and 5 show that different polar groups not only do not adversely affect the product yield but enhance the stereoselectivity of the reaction. The reaction with mesitaldehyde (entry *7,* **Table), carried out to test the effect of using a sterically hindered arylaldehyde, gave a diol with an H-l** r **value characteristic of an erythro-diol, but a coupling constant like that of a threo-product. The lJC n.m.r. signals for C-l and C-2 are characteristic of an erythro-product. The conformation of** butan-1,2-diols is dominated by intramolecular hydrogen bonding⁹ and in ethan-1,2-diol the **conformation is known to be the result of interplay between gauche interactions and** intramolecular hydrogen bonding¹⁰. On this basis the larger H-1, H-2 coupling of erythro-diols as compared with threo-diols is readily explained. However models indicate **that in any conformation of erythro-1-(2,4,6-trimethylphenyl)propan-1,2-dial** *(7,* **Ar = 2,4,6_trimethylphenyl, R = Me) that allows intramolecular hydrogen bonding, there is a severe and unavoidable interaction between one of the** *two* **ortho-methyl groups and the aliphatic C-3 methyl group. The aromatic ring on C-l and the methyl group on C-2 must be** anti-, even though this precludes intramolecular hydrogen bonding. The resultant conformation has H-1 and H-2 almost anti, with a correspondingly large coupling constant. It **is noteworthy that the coupling constants of 1,2-diols are also strongly affected by**

TABLE

solvents that discourage intramolecular hydrogen bonding 8b .

Another point of great interest involves entry 7, in which the same components that yield trans-alkene at room temperature' give an excellent yield of erythro-diol at low temperatures. This implies either that there is stereochemical drift or that the intermediates $\frac{3}{2}$ and $\frac{4}{3}$ exist in the acyclic forms 3b and 4b which undergo <u>anti</u>-elimination, a \sim type that is well precedented in organoborane reactions¹¹.

As regards the new process the situation is unequivocal. It represents a novel route of high stereoselectivity to erythro-1,2-diols, and is a variant of the Wittig type reactions available only to the boron-Wittig reaction. We are investigating its extension to condensations with ketones and other types of aldehyde.

The mechanism(s) of the boron-Wittig reaction remains a fascinating topic with such questions as whether the intermediates 3 and 4 exist in open or ring forms, whether they undergo anti- or syn-eliminations, effects of salts and temperature being under active **investigation.**

REFERENCES

- 1. A. Pelter, B. Singaram and J.W. Wilson, <u>Tetrahedron Lett.</u>, 1983, 24, 635.
- **2. B.E. Maryanoff, A.B. Reitz and B.A. Duhl-Emswiler, J.Amer.Chem.Soc., 1985, 107, 217.**
- **3. B.E. Maryanoff, A.B. Reitz, M.S. Mutter, R.R. Inners and H.R. Almond Jr., J.Amer.Chem.Soc., 1985, 107, 1068.** \sim
- 4. <u>inter alia</u>. M. Schlosser, <u>Top.Stereochem.</u>, 1970, 5, 1; I. Gosney and A.G. Rowley, in **'Organophosphorus Reagents in Organic Synthesis',** J.I.G. **Cadogan. Ed., Academic Press, New York, 1979, p. 17-153; J.D. Thacker, M.-H. Whangbo and** J.J. **Bordner,** J.Chem.Soc.Chem.Commun., 1979, 1072; H.J. Bestmann, Pure.Appl.Chem., 1979, 51, 515; **1980, 52, 771; E. Vedejs, G.P. Meier and K.A.J. Snoble, J.Amer.Chem.Soc.,** 1981, 103, 2823; M. Schlosser and B. Schaub, <u>ibid</u>, 1982, 104, 5821; G.A. Olah and V.V. - ²⁰¹ Krishnamurthy, ibid, 1982, 104, 3987.
- **5. (a) P.F. Hudrlik in "Organosilicon Compounds in Organic Synthesis" in "New Applications of Organometallic Reagents in Organic Synthesis", D. Seyferth, Ed., Elsevier, Amsterdam, 1976, p.** 127-159. (b) **P.F. Hudrlik, A.M. Hudrlik and A.K. Kulkarni, J.Amer.Chem.Soc.,** 1982, 104, 6809 and references quoted therein.
- **6. P.F. Hudrlik and D. Peterson, J.Am.Chem.Soc., 1975, 97, 1464. %%**
- **7. A. Pelter and K. Smith, 'Comprehensive Organic Chemistry', Vol. 3, D.N. Jones (Ed.), Pergamon Press, Oxford, 1979, p. 813-815.**
- 8. (a) G.H. Schmid, <u>Canad.J.Chem.</u>, 1968, 46, 3415. (b) C. Zioudrou and P. Chrysochou, Tetrahedron, 1977, 33, 2103.
- **9. W.K. Busfield, M.P. Ennis and I.J. McKewen, Spectrochim.Acta., 1973, E, 1259.**
- **10. D.R. Traux and H. Wieser, Chem.Soc.Rev., 1976, 5, 411.**
- **11. G. Zweifel, H. Arzoumanian and C.C. Whitney, J.Amer.Chem.Soc., 1967, g, 3652.**

We thank the DFG and the CSIR for financial support of this work.

(Received in UK 8 August 1985)